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Abstract 

Since the proportional navigation guidance law was first 
introduced, many of the researchers had proposed differ- 
ent methodologies to investigate the corresponding per- 
formances of all the existing guidance laws. In 1997, 
Yang and Yang introduced an unified approach, in that 
paper the authors found that under the proposed frame- 
work, all the existing guidance laws, namely TPN, IPN 
and PPN, are indeed special cases of the mentioned 
general guidance law. But their results were restricted 
to two dimensional space. In this paper, the author 
not only extends the results to three dimensional space, 
but also to GTPN, GIPN and PPN. Unlike conven- 
tional researchers, a modified polar coordinate (MPC) is 
adopted. It is shown that with the property of this mod- 
ified polar coordinate, the number of differential equa- 
tions required to describe the relative dynamics can be 
reduced from six to three, and all the terms of differ- 
ential equations involve only products and additions of 
variables. For all the mentioned guidance laws in this pa- 
per, to describe the capture area we need only two trans- 
formed variables, while the third variable is required to 
provide the condition of finite turn rate. 

1 Introduction 

Since the proportional navigation guidance law was first 
introduced, many of the researchers have proposed differ- 
ent methodologies to investigate the corresponding per- 
formances of all the existing guidance laws, for example, 
TPN [1,2], IPN [3], PPN [4,5]. But unified approach 
did not exist until 1997. In 1997, Yang and Yang (61 
introduced an unified approach, in that paper the au- 
thors found that under the proposed framework, all the 
existing guidance laws are indeed special cases of the 
mentioned general guidance law. But their results were 
restricted to two dimensional space. 

Although there were some results for the case of there di- 
mensional space [7-91, again, the approaches used were 
distinct. In this paper, the author not only extends the 
results to three dimensional space, but also to the gen- 
eral form of TPN and IPN, namely, GTPN, and GIPN. 
Unlike conventional researchers, a modified polar coordi- 
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nate (MPC) is adopted. It is shown that with the prop- 
erty of this modified polar coordinate, the number of 
differential equations required to fully describe the rela- 
tive dynamics between missile and target can be reduced 
from six to three, and all the terms involved in the dif- 
ferential equations contain only products and additions 
of variables. In addition, using the relative velocities, 
which were adopted by Yang and Yang [6], as nonlinear 
transformation variables reveals that for the GTPN and 
GIPN all the results found for two dimensional space can 
be applied directly to the case of nonmaneuvering target 
or maneuvering but the target’s exact acceleration can 
be obtained. However, for the PPN guidance law, the 
results obtained from two dimensional space can only be 
applied to nonmaneuvering target. 

In section 2, the 3D relative dynamics between missile 
and target are derived in MPC. The number of dynamic 
equations are reduced from six to three. And these three 
differential equations also shed the light on why the gen- 
eral guidance laws introduced in section 3 takes its given 
form, which was never explained in existing literatures. 
Then in section 4, using the relative closing and tangent 
velocities transforms the first two differential equations 
into another form which is used to derive the capture 
area and the condition for finite turn rate for all the 
three guidance laws. 

2 Dynamic Equations in the Modified Polar 
Coordinate 

Let the relative position vector (line of sight),r, of target 
and missile be defined as (see Figure 1) 

T = T T  - T M  = p e r ,  (2.1) 

where r is the line of sight (LOS) vector from missile 
platform to target, rT and T M  are the position vectors 
of target and missile in an inertial coordinate O X Y Z  
respectively, pis the Length of LOS vector, i.e., the range 
between target and missile, and e, is the unit vector in 
the direction of the LOS. Then the relative velocity and 
acceleration can be written as 

(2.2) 

(2.3) 

d 
dt r = U, = be, + per  = UT - V M ,  

d 
-vr = per + 2per +per = aT - a ~ ,  
dt 

- 



in which U ,  is the relative velocity of target relative to 
missile, 6 ,  2 $er is the time derivative of the unit LOS 
vector, U T , U M  and a T , a M  are the missile and target 
velocity and acceleration vectors respectively. Note that 

D 
Y 

Figure 1: Engagement geometry 

UT - U M  has no component along the direction e ,  x e,, 
that is, (UT - vM)T(er x 6 r )  = 0. 

The components of the state vector of the modified polar 
coordinate system are defined as follows [lo]: 

Note that xp2  is not a unit vector in general, indeed 
its magnitude is equal to the magnitude of the angular 
velocity of line of sight. By assuming that the angular 
velocity of line of sight, R, is orthogonal to the line of 
sight, we have 

xp1 x xp2 = xp1 x (R x X P l )  = R,  (2 .8)  

it follows that 
T T 

( X P l  x X P Z )  ( X P l  x X P Z )  = X P Z Z P Z  = RTR, (2 .9)  
X P l  x R = - x p z ,  (2 .10)  

(2.11) 

in the above equations x p i  x x p j  denotes the cross prod- 
uct of vectors x p i  and x p j  . For convenience, let us define 
the following unit vectors 

xp2 x R = (RTR)XPl ,  

A R  A X P 2  et = - m’ “ e n = -  
(2.12) 

apparently et and en are the unit vectors in the direc- 
tion of 6 ,  and R respectively. By taking this orthogonal 
coordinate system ( e r ,  e t ,  en) ,  the analysis of  guidance 
law in this paper becomes easy. 

If we express UT and a M  in this (e,, et, en)  coordinate 
system as 

(2 .13)  aT = a m e r  + a m e t  + a m e n ,  

(2 .14)  aM = a m e r  + a m e t  + a m e n ,  

and after applying the constraints (2.7), we then have 
the following three coupled scalar differential equations: 

A 

A 

The state dynamics, are given by differentiating each 

d 
- Z P  = f ( x p )  + g ( x p ) ( a T  - a M ) ,  d t  

component of state vector x p :  

(2 .5)  

where 

in which xF2xp2 represents the inner product of vec- 
tors z p 2  and xp2 ,  x p l x s l  is the matrix formed by the 
product of vectors x p l  and xTPl, 0 1 ~ 3 ~ 0 3 ~ 3  are defined 
as 1 x 3 and 3 x 3 zero matrices, and 13 denotes the 
3 x 3 identity matrix. To describe the relative dynam- 
ics between missile and target in a 3-Dimensional space, 
six states are required. However, we utilized eight states 
instead, hence, there are two constraints on the above 
given states, namely, 

(2 .7)  
T 

X T P l X P l  = 1, X p l X P z  = 0.  

d 
Z Z P ~  = RTR - ~ $ 4  + x p a ( a ~ 1  - a m ) ,  (2 .15a)  

d - dtxP3 = -xP3xP4. ( 2 . 1 5 ~ )  

In addition, the dynamic equation for the angular ve- 
locity of line of sight Cl satisfies 

d -0 = 2 ~ 3  [ ( a m  - aMz)en - ( a m  - a ~ n ) e t ]  
d t  

-2xpqR.  (2 .16)  

3 Guidance Laws 

Observe equations (2.15) and (2.16) we know that the 
acceleration components U M ~ ,   UT^ do not have any ef- 
fect on capturing the target but do change the direction 
of R. Furthermore, they influence system observabil- 
ity [l l] .  The above observation explains why most of 
the existing guidance laws are in the form of [6] 

aM = w g  x a, (3 .1)  

where the guidance reference vector u9 is defined as 

(3 .2)  
A w g  = Vgier + wg2e t  + vgnen.  
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Hence 

aM1 = ug2 m, a M 2  = - U g 1 K  TO,  a M n  = 0, (3.3) 

d 
- x p 4  = R ~ O  - 22p4 + x p S ( a T 1  - ug2&F5), (3.4a) 
dt  

&d%% = - 2 X p 4 m f x p 3 ( a ~ 2  f ? ~ , i m ) ( 3 . 4 b )  

and equations (2.15) can be further written as 

d t  

(3.4c) d - & X P 3  = - 2 P 3 X P 4 .  

For convenience, let us define the velocity vector of mis- 
sile and target as 

, (3 .5)  

(3.6) 

and evM,evT are 

A 

A 

UM = V M e u M  = V M l e r  + UM2et  3- U M Q e n  

U T  = V T e v T  = V T l e r  f U T 2 e t  f UTOeCl, 

the unit vectors in the direction of O M ,  UT, respectively. 

Table 1: Expressions of u g l ,  ug2 and ugn for existing guid- 
ai 

TPN 
RTPN 

GTPN 

GIPN 
PPN 
OPN 

:e laws 

Table 1 shows the guidance reference vectors adopted 
by some of the existing guidance laws [6,11], in which 
a l p  are navigation constants (or variables). In most of 
the literatures CY = p = constant, however, it is not 
necessarily to be held [ll]. Note that for the case ,B = 
a = constant, then 

ug =  UT - U M )  = pur,  for IPN, (3.7) 
= pu,(t,), for TPN, ( 3 4  
= - ~ u M ,  for PPN. (3.9) 

In this paper, we adopt the definition of “capture” of 
target given in [9]. 

Definition 3.1. The capture of target by missile is char- 
acterized by a finite final time t f  at which the range p ( t f )  
is equal to zero. This can be formulated as 

(3.10) 

To avoid the turn rate of the line of sight, i.e. [[i,ll, from 
infinite, we also require that 

3tf < 00 such that p ( t p )  = 0 or x p 3 ( t f )  = 00. 

Js lT( t f )n( t f )  is finite. (3.11) 

Definition 3.2. The time at which missile is launched 
is denoted by t o  and is called the initial time. 

In the following sections we assume that all the required 
states, xp, can be measured. 

4 Nonlinear Transformation Using 
Relative Velocities 

In this section we adopt the relative velocity components 
in the direction of e,, et [6], and xp3 as the intermediate 
variables U ,  U ,  and w then we have 

and the relative dynamics can be characterized by 

d u  - = W2W + ( U T I  - U M l ) ,  u(t0) 210, (4.2a) d t  
dv 
d t  - = -UUW + ( ( 3 ~ 2  - U M ~ ) ,  u ( t o )  = WO, (4.2b) 

- w ( t 0 )  = - -  d w  
d t  

with the initial conditions 

(4.2~)  

To have a direct comparison with the results in [6], as- 
sume that 

hence we have 

Equations (4.2) can be further transformed into 

- du = u2 - ug2w, u(r0) = U01 
d r  

- d u  = -uu + ugl’u, u(r0) = U01 
d r  

(4.4a) 

(4.4b) 

- d w  = -uw, w(r0) = WO, 

d r  
(4.4c) 

A where the independent variable r is defined as d r  = w d t .  
Note that the phase portraits on the ( U ,  u)-plane in the 
“t” domain are the same as those in the “rll domain. 
Moreover, U = 0 is the “equilibrium line” on the ( U ,  U )  

plane in r domain. 

The capture conditions (3.10) and (3.11) imply that at 
final time t f ,  w ( t f )  = 0. In addition, it is obvious that 
at  final time, we have a finite closing velocity $(tf) < 0. 
Henceforth, we define the capture region as: 

Definition 4.1. The capture region is the region on the 
( U ,  u)-plane such that whenever the initial states ( U O ,  U O )  

are started inside this region, the state trajectories will 
lead to (uf ,O) at t f  or r f ,  where uf is a negative finite 
number, and the turn rate J W ( t r ) R ( t f )  remains finite 
as well. 
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Although the conditions given in definition 4.1 are neces- 
sary conditions of definition 3.1, however, for the guid- 
ance laws considered in this paper, the corresponding 
given conditions turn out also to be sufficient. 

Comparing the first two equations of (4.4) with the equa- 
tions (5a,b) in [6] reveals that both of the equations in- 
deed are the same, which in turn indicates that equa- 
tions (4.4) are the three dimensional extension of [SI. 
Hence, most of the results given in [6) can be applied 
directly. While the conclusion regarding PPN guidance 
needs some modification as will be seen in the following 
consecutive subsection. For comparison, the following 
three cases are considered: 

4.1 Case 1: GIPN 
The differential equations for guidance law using GIPN 
can be formulated as 

d u  - = - ( C l  - l ) V 2 ,  U(T0) = Uo, 
d r  
d v  
d r  

(4.5a) 

(4.5b) - = (p - l )uv,  v(r0) = 210, 

d w  
dT 
- = -uw, w(r0) = WO. (4.5c) 

It is easy to show that for constant a l p  the phase por- 
traits on the ( U ,  v) plane satisfy 

(p  - 1 ) ~ '  + (Q - l )v2  = ( p  - 1 ) ~ ;  + (a - 1 ) w i ,  (4.6) 
which is an ellipse or hyperbola centered at (0,  0), and 

the phase portraits on the (v, w )  plane satisfy 

V(T)W( ' - ' ) (T)  = vOwA'-'), or 

d m p ( 2 - ' ) ( 7 )  = J R T ( t o ) R ( t o ) p ( 2 - P ) ( t o ) .  (4.7) 

The state trajectories on the ( u , v )  plane can be easily 
shown in the following form 

(4.12) 

where 8 is defined by de = wd7, and U ( & )  = U O ,  v(80) = 
VO. It is easy to see that on the (u lv)  plane, the phase 
portraits satisfy 

(4.13) 

A 

(U - pU0)' + (U - avo)' = T $ T p N ,  

which is a circle centered at (puo ,av~)  with radius 
TGTPN = J(p - 1)%% + (a  - 1)2vi (see Figure 2). 
Note that &8 = v > 0, for all vo > 0, and the trajectory 
of ( ~ ( 6 ) ~  v(8)) will move in a clock-wise direction. 

V 
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0 
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/ \ 

/ \ 
/ \ 

I \ 

I 
0 

- - - -  . 
/ \ 

/ \ 
/ \ 
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I 
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I 
I 
\ 
\ 
\ 

Figure 2: Phase portraits on (u,w) plane for GTPN guid- 
ance law with a > 1,p > 2. 

Apparently, to have finite turn rate at final time t f ,  
2 is required. The capture area is determined by [ l l ] :  

> For constant P, ' 1 1  to have ~ ( 7 f )  < 0, " ( ~ f )  = 0, the 
region is determined 

a'w,," < r i  < p2u;, and uo <: 0. (4.14) 

On the (w, w )  plane, it can be shown that 1. For navigation variables a > 1, p > 2: 

any initial condition except uo 2 0 and vo = 0. 
(4.8) 

2. For navigation variables omin 5 o 5 1,p > 2: 
2)(7)W(T) = v(7o)w(ro)eJ.;, (puo-2u)dr  . (4.15b) 

uo < 0 and U: + (omin - 1)vi  > 0. (4.9) or, equivalently, 

3. For constant a,p such that a < 1,p > 2: 

uo < 0 and (p  - 1)u; + (a  - 1)v: > 0. (4.10) 

- J"";:;) ['+ 7=+Q=7] Po -(.-ova ) $ 
P ( 7 )  = p(7o)e 1 

Jzo = JRT (70) R( 70) eJ=o (puo- 

It is easy to show that if /3 > 2,uo < 0, the minimum 

( z p  - 2p + 1 ) ~ ;  + (1 - 2a)v; > 0, 

4.2 Case 2: GTPN 
For the guidance law uses GTPN, the relative dynamics 
can be described by 

value of U occurs at uo or u ( T ~ ) .  In addition, if 

3 2  (4.16) 

d u  
d r  

then we have DUO - 2u < 0, for T > 7-0, which in turn (4.11a) results in finite turn rate at final time T f ,  
- = V 2  - Cl'Vo'U, U ( T 0 )  = Uo,  

- d v  = -uv + PUOZI, ~ ( 7 0 )  = VO, (4.11b) J n T ( T f ) R ( 7 f )  < JnT(T~,)n(7-~),  (4.17) 
dT 

and p(j-f) = 0. Note that condition (4.16) will be satis- dw - d r  -UW, W ( 7 0 )  = W O .  ( 4 . w  fied automatically if ,B > 2, a _< $. 
1714 



4.3 Case 3: PPN 
For PPN guidance law, the missile's velocity is adopted 
as the guidance reference vector, and consider nonma- 
neuvering target (aT = 0), hence, 

a M  = -PVMeuM x 0, 
= - P V M ~  [(eTMet)e, - (e:,e,)et] (4.18) 

du 
- = v2 + PVM(eTMet)v, ~ ( ~ 0 0 )  = UO, dr 
dv 
dr 
dw _ -  - -UW, w(r0) = WO. dr 

and 

(4.19a) 

- = -UV - PVM(eTMe,)v, V ( T O )  WO, (4.19b) 

(4.19~) 

Next, it is easy to see that 

aM = 6M = VMevM + V M k v M .  (4.20) 
However, without considering aerodynamic drag, com- 
paring equations (4.18) and (4.20) yields 

V M  = 0, (4.21) 

= - , B V M ~  [(eTMet)e, - ( e T ~ e , ) e ~ ]  (4.22) 

It can be shown that the direction cosines ezMe,, ,:,et 
and e:,,, satisfy 

%(%Mer) d T  = - (P - I ) (  e T M e t ) V ,  (4.23a) 

(4.2310) 

Z(euMeC2) d T  = 0, (4 .23~)  

V M & M  -PVMe,M x 0, 

d T  z ( e u M e t )  = ( P -  l)(eTMer)v, 

with initial conditions (eTMer)(TO) = 
(e:Mer)o, (e,Met)(m) T = (eTMet)o, (e:Men)(n) = (eTMen)o. 
and the following unity length constraint as well 

1 = (eTMe,)' + (eTMet)' +(e:Men)2. (4.24) 

Observing equations ( 4.23) reveals that (eTMe,) and 
(.:,et) can be solved independently from (4.19), 

(4.25) 

(4.26) 

This implies that the direction cosines of target on the 
(U, U )  plane satisfy 

(4.27) 

follows that the trajectory on the ( U ,  U )  plane can be real- 
ized as a moving circle centered at (VT(eTTer), VT(eTTet)) 
with constant radius T P ~ N  = & , ,  - V,"(eTTen)E (see 
Figure 3), that is, 

A T  A 
where (e&e,)o = (evTer)(to),  (e:Tet)o = (eTTet)(tO). It 

[U - v ~ ( e T ~ e ~ ) ] ~  + [V - V ~ ( e & e t ) ] ~  = & P N .  (4.28) 

Equation (4.30) implies that 

VMJ(eTMer)i + (eTMet)z  > VTJ(e,TTer)z + (e:Tet)~.31a) 
p > 2. (4.31b) 

is a sufficient condition to guarantee the satisfaction of 
capture condition for any initial engagement geometry. 
However, due to the fact explained by equation (4.29), 
condition (4.31) is equivalent to 

VM > VT and p > 2. (4.32) 

Next, on the ( U ,  w) plane, it can be shown that 

V ( T ) w ( T )  = wowoeI~o  [ - 2 u - - ~ ~ n * ( C M e - ) I d r  

V,w,e.f~o I - z v ~ ( e : ~ e ~ ) + ( z - P ) v ~  (eTM e - ) l d ~  (4.33) 

(4.34) 

- - 

W ( T )  = woe- JT' u d r ,  

-,f$ = d B  =woe 0 , 
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which in turn indicates that if is chosen such that 

L:[-2vT(ezTer) + ( 2  - ~ ) ~ , w ( e : M e , ) l d T  < 0, (4.35) 

then the finite turn rate constraint can be retained. It 
can be seen from Figure 3 that if 

VM > VT,P > 2 and (e&er)o > 0, (e:Mer)o > 0, (4.36) 

then inequality (4.35) can be satisfied. In addition it 
can be shown that for 0 < A << 1 

which in turn renders p ( ~ f )  = 0. 

Figure 3: Velocity diagram on (u,v) plane for PPN guid- 
ance law. 

5 Conclusion 

In this paper, the author adopted the modified polar co- 
ordinate to describe the relative dynamics between tar- 
get and missile. It is shown that with the property of 
this modified polar coordinate, the number of differential 
equations required to describe the relative dynamics can 
be reduced from six to three, and all the terms of differ- 
ential equations involve only products and additions of 
variables. Then utilized relative velocities as the trans- 
formation variable, all the results derived by Yang and 
Yang in [6] can be recovered. More specifically, for the 
case of GTPN and GIPN, the results found for two di- 
mensional space can be applied directly to the case of 
nonmaneuvering target or maneuvering target but with 
measurable exact acceleration. However, for the PPN 
guidance law, the results obtained from two dimensional 
space can only be applied to nonmaneuvering target. For 
all the mentioned guidance laws in this paper, to describe 
the capture area we need only two transformed variables, 

while the third variable is required to provide the infor- 
mation of finite turn rate. The proposed mathematical 
model in this paper not only provides an intuitive expla- 
nation on the reason why most of the existing guidance 
appears in their current forms, but also paves the way to 
analyze the capture area and performance for even more 
general guidance laws with more realistic situations, e.g., 
the maneuverabilities (accelerations) of missiles and tar- 
gets are bounded. 
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